
Distributed Multi-Task Relationship Learning

Sulin Liu
†
, Sinno Jialin Pan

†
and Qirong Ho

‡

†
Nanyang Technological University, Singapore

‡
Petuum, Inc., USA

†
{liusl,sinnopan}@ntu.edu.sg,

‡
hoqirong@gmail.com

ABSTRACT

Multi-task learning aims to learn multiple tasks jointly by exploit-

ing their relatedness to improve the generalization performance for

each task. Traditionally, to perform multi-task learning, one needs

to centralize data from all the tasks to a single machine. However,

in many real-world applications, data of different tasks may be

geo-distributed over different local machines. Due to heavy com-

munication caused by transmitting the data and the issue of data

privacy and security, it is impossible to send data of different task

to a master machine to perform multi-task learning. Therefore, in

this paper, we propose a distributed multi-task learning framework

that simultaneously learns predictive models for each task as well

as task relationships between tasks alternatingly in the parame-

ter server paradigm. In our framework, we first offer a general

dual form for a family of regularized multi-task relationship learn-

ing methods. Subsequently, we propose a communication-efficient

primal-dual distributed optimization algorithm to solve the dual

problem by carefully designing local subproblems to make the dual

problem decomposable. Moreover, we provide a theoretical con-

vergence analysis for the proposed algorithm, which is specific

for distributed multi-task relationship learning. We conduct ex-

tensive experiments on both synthetic and real-world datasets to

evaluate our proposed framework in terms of effectiveness and

convergence.

KEYWORDS

Distributed Multi-Task Learning, Transfer Learning

ACM Reference format:

Sulin Liu
†
, Sinno Jialin Pan

†
and Qirong Ho

‡
. 2017. Distributed Multi-Task

Relationship Learning. In Proceedings of KDD’17, Halifax, NS, Canada, August
13-17, 2017, 10 pages.

https://doi.org/10.1145/3097983.3098136

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4887-4/17/08. . . $15.00

https://doi.org/10.1145/3097983.3098136

1 INTRODUCTION

In the era of big data, developing distributed machine learning al-

gorithms for big data analytics has become increasingly important

yet challenging. Most of the recent developments of distributed

machine learning optimization techniques focus on designing algo-

rithms on learning a single predictive model under a setting where

data of a certain task is distributed over different worker machines.

Besides this setting, there is another natural setting of distributed

machine learning where data of different sources (e.g. users, orga-

nizations) is geo-stored in local machines, and the goal is to learn a

specific predictive model for each source.

Under this setting, a traditional approach is to regard learning on

each source’s data as an independent task and solve it locally for

each source. This approach fails to fully exploit the commonality or

relatedness among all the available data to learn a more precisely

predictive model for each source. Another approach is through

multi-task learning (MTL), where multiple tasks are learned jointly

with the help of related tasks [8, 21]. The aim is to explore the shared

relevant information between the tasks to achieve better generaliza-

tion performance than learning the tasks independently. Out of data

privacy or security issue and communication cost of transmitting

the data, it is not feasible to centralize the data of different tasks

to perform MTL. And even if the data can be centralized, the size

of the total data could easily exceed the physical memory of the

machine. However, most existing MTL methods that have been de-

veloped could not be implemented directly in a distributed manner.

Although there have been developments in data-parallel distributed

algorithms for single task learning [17, 27, 32], distributed MTL

under the aforementioned setting remains challenging as these

algorithms do not suit the MTL formulation as MTL requires joint

optimization of parameters of different tasks.

To address the problem mentioned above, we propose a distributed

multi-task relationship learning algorithmic framework, denoted

by DMTRL, which allows multi-task learning to be done in a dis-

tributed manner when tasks are geo-distributed over different

places and data is stored locally over different machines. In general,

existing MTL methods can be categorized into two main categories:

learning with feature covariance [2, 3, 20] and learning with task re-

lations [11, 12, 14, 34]. Different from prior solutions to distributed

MTL, which are focused on the former category [5, 29, 30], our

proposed DMTRL falls into the latter category. In our proposed

framework, a communication-efficient primal-dual distributed opti-

mization technique is utilized to simultaneously learnmultiple tasks

https://doi.org/10.1145/3097983.3098136
https://doi.org/10.1145/3097983.3098136

as well as the task relatedness in the parameter server paradigm,

with a theoretical convergence guarantee.

Specifically, to make learning multiple tasks with unknown task

relationships in a distributed computing environment possible, we

first derive a general dual form for a family of regularized multi-

task relationship learning methods. With the general dual form, we

design our distributed learning algorithm by leveraging the primal-

dual structure of the optimization under the parameter server par-

adigm. In each round of the distributed learning procedure, each

local worker solves a local subproblem approximately over the data

of each local task, and sends updates back to the server. Then the

server aggregates the updates and calculates updated task weight

vectors, which are sent back to corresponding workers, by updating

and exploiting the task relatedness. Moreover, we provide theoreti-

cal analysis on the convergence rate of the proposed framework and

analyze how task relationships affect the convergence rate.

The major contributions of our work are three folds:

• Our proposed framework DMTRL is general for a family of regu-

larized MTL methods, which simultaneously learn task relation-

ships and task-specific predictive models from geo-distributed

task data. Furthermore, DMTRL is communication-efficient. As

a by-product, DMTRL provides a scalable solution to MTL in

large scale when the total data is of massive due to either large

number of tasks or large amount of data per task.
1

• We provide theoretical analysis on primal-dual convergence

rate for the proposed distributed MTL optimization for both

smooth and non-smooth convex losses. Different from previous

distributed optimization convergence analysis for a single task,

ours is specific for distributed MTL which takes task relation-

ships into consideration.

• We implement the framework on a distributed machine learn-

ing platform Petuum [31], and conduct extensive experiments

on both synthetic and real-world datasets to demonstrate its

effectiveness in terms of prediction accuracy and convergence.

Note that our framework can be fitted to any distributed ma-

chine learning platform under the parameter server paradigm,

such as [16].

2 RELATEDWORK

Distributed machine learning has attracted more and more in-

terests recently [4]. There have been tremendous efforts done on

differentmachine learning problems [4, 13, 19]. At the same time, de-

veloping distributed optimization methods for large-scale machine

learning has been receiving much research interest [7, 17, 23, 27, 32].

These methods allow for local optimization procedure to be taken

at each communication round. However, their algorithms focus

on single-task learning problems, while our work aims at develop-

ing a distributed optimization algorithm for MTL problems where

single-task learning algorithms cannot be directly applied.

1
Though MTL is originally proposed for the problem where each task only has a small

size of labeled training data, it has been shown by other researchers that when some

tasks have relatively large amount of data, MTL can still help improve generalization

across tasks by jointly exploiting information from related tasks [1].

Online Multi-task Learning assumes instances from different

tasks arrive in a sequence and adversarially chooses task to learn.

Cavallanti et al. [9] exploited online MTL with a given task rela-

tionship encoded in a matrix, which is known beforehand. Saha

et al. [25] exploited online learning of task weight vectors and rela-

tionship together. They formulated the problem of online learning

the task relationship matrix as a Bregman divergence minimiza-

tion problem. After the task relationship matrix is learned, it is

exploited to help actively select informative instances for online

learning.

Parallel Multi-task Learning aims to develop parallel computing

algorithms for MTL in a shared-memory computing environment.

Recently, Zhang [33] proposed a parallel MTL algorithm named

PMTL. In PMTL, dual forms of three losses are presented and ac-

celerated proximal gradient (APG) method is applied to make the

problem decomposable, and thus possible to be solved in paral-

lel. By comparison, firstly, we induce a more general dual form,

where any convex loss function can be applied. In addition, our

algorithm can solve the same type of problem as PMTL under the

distributed machine learning setting, while PMTL cannot be applied

directly when data of different tasks are stored on different local

machines.

Distributed Multi-task Learning is an area that has not been

much exploited. Wang et al. [29] proposed a distributed algorithm

for MTL by assuming that different tasks are related through shared

sparsity. In anotherwork [5], asynchronous distributedMTLmethod

is proposed for MTL with shared subspace learning or shared

feature subset learning. Different from the above mentioned ap-

proaches, our method aims at solvingMTL by learning task relation-

ships from data, which can be positive, negative, or unrelated, via a

task-covariance matrix. Ahmed et al. [1] proposed a hierarchical

MTL model motivated from the application of advertising. Their

method assumes a hierarchical structure among tasks be given in

advance. Proximal subgradient method is utilized such that par-

tial subgradients can be distributively calculated. Our setting is

different from theirs as we do not assume tasks lie in a hierarchical

structure. Moreover, our method distributes the dual problem while

theirs focuses on distributively solving the primal with the given

task hierarchy. Another work that exploits distributed MTL [10]

considers a client-server setting, where clients send their own data

to the server and the server sends back helpful information for each

client to solve the task independently. By sending data from clients

to the server, it is very communication-heavy and thus not feasible

under our problem setting.

Notation. Scalars, vectors and matrices are denoted by lowercase,

boldface lowercase and boldface uppercase letters respectively. For

any k ∈ N+, we define [k] = {1, · · · ,k }. For a vector a ∈ Rn that is

split intom coordinate blocks, i.e. a = [ã
[1]

; · · · ; ã
[m]

], we define

a
[i] ∈ R

n (i ∈ [m]) that takes same value of a if the coordinate

belongs to i-th coordinate block and takes 0 elsewhere.

3 PROBLEM STATEMENT

For simplicity in description, we consider a setting withm tasks

{Ti }
m
i=1

that are distributed over m workers, i.e., one machine is

for one task. In practice, our framework is flexible to put several

tasks together in one worker or further distribute data of one task

over several local workers with straightforward modification of the

algorithm. Each taskTi on a worker i follows a distributionDi and

has a training set of size ni with xij ∈ R
d
being the j-th data point

and yij as its label. The value of label y
i
j can be continuous for a

regression problem or discrete for a classification problem. Here,

we consider a general family of regularized MTL methods intro-

duced in [34], which is a general multi-task relationship learning

framework that includes many existing popular MTL methods as

its special cases [11, 12, 14, 15].

The formulation is defined as follows:

min

W,Ω

m∑
i=1

1

ni

ni∑
j=1

l ij (w
T
i ϕ (x

i
j),y

i
j) +

λ

2

tr(WΩWT) (1)

s.t. Ω−1 ⪰ 0, and tr(Ω−1) = 1,

where l ij (·) is an arbitrary convex real-valued loss function of the

i-th task on the j-th data point, ϕ (·) is a feature mapping that

can be linear or nonlinear, W = (w1,w2, · · · ,wm) ∈ Rd×m , and

λ > 0 is the regularization parameter. The first term of the objective

measures the empirical loss of all tasks with the term 1/ni to balance
different sample sizes of different tasks. The second term serves as

a task-relationship regularizer with Ω being the precision matrix

(inverse of the covariance matrix as shown in [34]). The covariance

matrix Ω−1
is flexible enough to describe positive, negative and

unrelated task relationships. The regularization term on each task’s

weight vector is embedded in Ω as well. The constraints serve to

enforce some prior assumptions on Ω−1
, which can be replaced by

some other convex constraints on Ω−1
.

According to [34], (1) is jointly convex w.r.t. W and Ω−1
, which can

be resorted to an alternating optimization procedure. Our proposed

DMTRL aims at distributing the learning of multiple tasks for find-

ing W with precision matrix Ω fixed when data of different tasks

are stored in local workers, and centralizing parameters W to a

server to update Ω in the alternating step. In the following section,

we first derive a general dual form for (1) with Ω fixed, which will

be used to design our distributed learning algorithm.

4 GENERAL DUAL FORMWITH Ω FIXED
AND PRIMAL-DUAL CERTIFICATES

Motivated by the recent advances in distributed optimization using

stochastic dual coordinate ascent (SDCA) for single task learn-

ing [17, 32], we turn to deriving the dual form to facilitate dis-

tributed optimization for MTL and arrive at the following theo-

rem.

Theorem 4.1. The general dual problem of (1) with Ω fixed is given
by:

max

α ∈Rn
D (α) = −

1

2λ
αT Kα −

m∑
i=1

1

ni

ni∑
j=1

l ij
∗
(−α ij), (2)

where l ij
∗
(·) is the conjugate function of l ij (·), α = (α̃

[1]
; · · · ; α̃

[m]
)

with α̃
[i] = (α i

1
, · · · ,α ini)

T , K is an n ×n matrix, where n=
∑m
t=1

nt ,

with its (I ij , I
i′
j′)-th element being σii′

nini′
⟨ϕ (xij),ϕ (x

i′
j′)⟩, I

i
j = j+

∑i−1

t=1
nt

is the global index for xij among all training data from all tasks, and

σii′ is the (i, i ′)-th element of Σ = Ω−1, which represents the correla-
tion between task i and i ′. The primal-dual optimal point correspon-

dence is given by w∗i =
1

λ
∑m
i′=1

∑ni′
j′=1

α i
′

j′
∗

ni′
ϕ (xi

′

j′)σii′ .

Here, K could be regarded as a multi-task similarity matrix with

each element scaled by inter-task covariance and the number of

instances per task. If ϕ (·) maps an instance to a Hilbert space, then

K is a kernel matrix. However, in this way, we have to compute the

kernel matrix of n×n size using all instances from all tasks, which

is infeasible in our distributed setting. Therefore, we propose to

use explicit feature mapping function ϕ (·) instead. For example, we

could approximate infinite kernel expansions by using randomly

drawn features in an unbiased manner [22]. Note that in PMTL [33],

dual forms of (1) for special cases such as hinge loss, ϵ-sensitive loss
and squared loss are derived for a similar problem. The difference

lies in that our theorem is more general, which applies to all kinds

of convex losses.

Following the primal-dual optimal point correspondence of Theo-

rem 4.1, it is natural to define a feasible W(α) that corresponds to
α as follows,

wi (α) =
1

λ

m∑
i′=1

ni′∑
j′=1

α i
′

j′

ni′
ϕ (xi

′

j′)σii′ . (3)

By defining the objective in (1) with Ω fixed as P (W), we have the
duality gap function defined as G (α) = P (W(α)) − D (α). From
weak duality, P (W(α)) is always greater or equal to D (α). There-
fore, duality gap G (α) could provide a certificate on the approxi-

mation to the optimum.

With the derived dual problem, we could carefully design local dual

subproblems that allow for distributed primal-dual optimization,

which will be presented in details in Section 5. The primal-dual

optimization method we introduce later has several advantages

over the gradient-based primal methods: 1) it does not need to

determine any step-size, and 2) the duality gap provides a measure

of approximation quality during training. Next, we introduce two

common classes of functions.

Definition 1 (L-Lipschitz continuous function) A function l : R→R
is L-Lipschitz continuous if ∀a,b ∈ R, we have

|l (a) − l (b) | ≤ L|a − b |.

Definition 2 ((1/µ)-smooth function) A function l : R→R is (1/µ)-
smooth if it is differentiable and its derivative is (1/µ)-Lipschitz,
where µ > 0. Or equivalently, ∀a,b ∈ R, we have

l (a) ≤ l (b) + l ′(b) (a − b) +
1

2µ
(a − b)2.

Note that most commonly used loss functions fall into the above

two classes. For instance, hinge loss falls under the first category,

squared loss falls under the second category, and logistic loss falls

under both categories. In Section 6, we provide convergence analy-

sis when the loss function falls into either of the above two cate-

gories. Based on the definition of smooth function above, we have

the following well-known lemma:

Lemma 4.2. Function l (·) is (1/µ)-smooth if and only if its conjugate
function l∗ (·) is µ strongly convex.

5 THE PROPOSED METHODOLOGY

5.1 The Overall Framework

Our proposed overall algorithm presented in Algorithm 1 is mainly

based on an alternating optimization procedure that comprises

two steps: solving W with a fixed Ω in a distributed manner be-

tween the server and workers (W-step: Steps 4-10), and solving Ω
with aggregated W from all workers on the server (Ω-step: Step
11).

Specifically, during the W-step, distributed optimization is con-

ducted on the dual problem (2) iteratively. Each worker is assigned

a local subproblem that only requires accessing local data. Note

that there are two types of updates in W-step: global update and

local update. In local update, every worker i solves the local dual
subproblem through a Local SDCA algorithm approximately over

the local dual coordinate block α
[i]. Moreover, by defining bi =

1

ni
∑ni
j′=1

α ij′ϕ (x
i
j′), each worker computes the updates on bi , i.e.,

∆bi , locally. When the local update ends, in global update, each

worker sends the corresponding ∆bi to the server. We know from

(3) that wi (α) = 1

λ
∑m
i′=1

biσii′ . Therefore, the server aggregates
the local updates on {bi }mi=1

from all local workers to calculate

updated task weight vectors {wi }
m
i=1

and send them back to the

corresponding local workers. This procedure repeats until desired

duality gap is arrived to establish convergence. Figure 1 provides

an illustration of the procedure in W-step.

... ...

Server

Worker1 Workeri Workerm

∆b1 ∆bi ∆bm

ρ, σii,
wi(α)

wm(α)
ρ, σmm,ρ, σ11,

w1(α)

Figure 1: Distributed learning in W-step

After W-step is finished, Ω-step is conducted on the server by

solving problem (1) with fixed W. Then the server will send each

updated σii to the corresponding local worker i . The computational

cost of this step is reasonable for computing centrally, since it only

involves optimizing tr(WΩWT) given the constraints on Ω−1
. The

optimization involves eigen-decomposition of WT W, which is com-

putationally expensive when number of tasks is large. In that case,

existing distributed SVD algorithms [18] can be leveraged to solve

it more efficiently, which is beyond the focus of this work.

Algorithm 1 DMTRL Algorithm

1: Input: data {xij ,y
i
j } with i = 1, ...m and j = 1, ..,nj distributed

overmmachines, aggregation parameter
1

m ≤ η ≤ 1, maximum

number of alternating iterations P , and maximum number of

global update iterations, T , in the W-step

2: Initialize: α (0)
[i] ← 0 for all machines i and wi (α) ← 0, where

i is the task that the data in machine i belong to, Ω ←m I, Σ←
1

m I
3: for p = 1 to P do
4: for t = 1 to T do
5: for all machines (local update): i = 1, 2, · · · ,m in par-

allel do
6: solving local subproblem:

∆α
[i] ← Local SDCA

(
α
(t−1)
[i] ,wi (α) (t−1) ,σ

(p−1)
ii

)
7: local updates:

α
[i]

(t) ← α
[i]

(t−1) + η∆α
[i]

∆b(t)i ← ∆b(t−1)
i + 1

ni
∑ni
j′=1

η∆α ij′ϕ (x
i
j′)

8: end for
9: Reduce (global update): server aggregates ∆bi ’s from

all workers to compute wi (α) (t) = wi (α) (t−1) +
1

λ
∑m
i′=1

∆biσii′ , and sends updated {wi }’s back to the cor-

responding local workers.

10: end for
11: Ω(p) ← Solve problem (1) on server for fixed W(p)

, whose i-

th column corresponds to wi (α), and update Σ(p) = Ω(p)−1

.

Server sends updated σii to each worker i
12: end for
13: Output: W, Σ

Note that in Ω-step, the communication cost is just to send an

updated scalar σii to the corresponding worker i . Therefore, the
main communication cost is caused by the global updates in W-step

(Row 9 in Algorithm 1), i.e., the number of iterations T .

5.2 Local SDCA

In this section, we describe the local dual subproblem to be solved

for local updates in W-step in details. For each worker, a local

subproblem is defined and only local data is needed for solving it.

During the local update step of W-step, each worker approximately

solves the local subproblem (Rows 5-8 in Algorithm 1). The local

subproblem solution does not need to be near-optimal. It only needs

to achieve some improvement of the local subproblem objective

towards the optimum, which will be explained more clearly in

Section 6. The subproblem for each worker is defined as,

max

∆α
[i]∈Rni

D
ρ
i (∆α [i]; wi (α),α

[i]), (4)

where

D
ρ
i (∆α [i]; wi (α),α

[i])

= −
1

ni

ni∑
j=1

l ij
∗
(−α ij − ∆α ij) −

1

ni

ni∑
j=1

∆α ijwi (α)Tϕ (xij)

−
1

2λm
αT Kα −

ρ

2λ
∆αT

[i]K∆α [i].

By defining the local subproblem in this way, when the local vari-

ables ∆α
[i] vary during the local subproblem optimization, the local

objectives well approximate the global objective in (2) as shown in

the following Lemma 5.1.

Lemma 5.1. For any dual variable α ∈ Rn , change in dual variable
∆α ∈ Rn , primal variable wi = wi (α), aggregation parameter
η ∈ [0, 1], and ρ, when

ρ ≥ ρmin = η max
α ∈Rn

αT Kα∑m
i=1

αT
[i]Kα [i]

, (5)

it holds that

D (α +η
m∑
i=1

∆α
[i]) ≥ (1−η)D (α) +η

m∑
i=1

D
ρ
i (∆α [i]; wi (α),α

[i]).

In Algorithm 1, each worker implements the local dual stochastic

coordinate ascent (SDCA) method [26] on the local subproblem (4)

to reach an approximate solution. The detailed algorithm of the

local SDCA method is presented in Algorithm 2. In each iteration,

a coordinate α ij in α
[i] is randomly selected and set to the update

that maximizes the local subproblem D
ρ
i (∆α [i]; wi (α),α

[i]) with

other local coordinates fixed. eij ∈ R
n
in Algorithm 2 is defined as

a basis vector with eij (I
i
j) = 1 and 0 elsewhere.

Algorithm 2 Local SDCA

Input: H ≥ 1,α
[i],wi (α),σii

Data: Local data {x ij ,y
i
j }
ni
j=1

Initialize: ∆α
[i] ← 0

for h = 1, 2, · · · ,H do
choose j ∈ 1, 2, · · · ,ni uniformly at random

δ ij := argmax

δ ij ∈R
D

ρ
i (∆α

(h−1)
[i] + δ ij e

i
j ; wi (α),α

[i])

∆α ij
(h)
← ∆α ij

(h−1)
+ δ ij

end for
Output: ∆α

[i]

6 CONVERGENCE ANALYSIS

Since the optimization problem (1) is jointly convex with W and

Ω−1
, the alternating optimization procedure is guaranteed to con-

verge to the global optimal solution. Our analysis focuses on the

distributed optimization in W-step. Ideas of our convergence anal-

ysis come from distributed or stochastic primal-dual optimization

methods for single task learning [17, 26]. However, our analysis is

specific for multi-task learning and provides insights on how task

relationships affect the convergence (section 6.3). Before conducting

convergence analysis, we define Assumption 1 that characterizes

how well the local solution approximates the local optimal solu-

tion. In section 6.1, we analyze the local convergence of the local

SDCA method in each worker, i.e. when is Assumption 1 satisfied.

In section 6.2, we show the primal-dual convergence rate for the

global update of W-step when Assumption 1 is satisfied.

Assumption 1. (Θ-approximate solution). ∀i ∈ [m], the local solver
at any iteration t ∈ [T] reaches an approximate update ∆α

[i] such
that there exists a Θ∈ [0, 1), and the following inequality holds:

E[D
ρ
i (∆α

∗
[i]; wi (α),α

[i]) − D
ρ
i (∆α [i]; wi (α),α

[i])]

≤ Θ

(
D

ρ
i (∆α

∗
[i]; wi (α),α

[i]) − D
ρ
i (0; wi (α),α

[i])

)
,

where ∆α ∗
[i] ∈ argmax

∆α
[i]∈Rni

D
ρ
i (∆α [i]; wi (α),α

[i]), i.e. the optimal

solution to the local subproblem.

The assumption characterizes how well the local subproblem is

solved. The smallerΘ is, the better the local subproblem is solved.

Note that in the following sections, due to the limit in space, for

most theorems and Lemmas, proofs are omitted. However, all the

detailed proofs can be found from the Appendix of our technical

report on arXiv.
2

6.1 Local Subproblem Convergence

The following two theorems show the local subproblem conver-

gence using SDCA as the local solver. In particular, by removing the

negative sign from (4), the original maximization local subproblem

can be written as the following minimization problem,

min

∆α
[i]
д(∆α

[i]) + f (∆α
[i]),

where

д(∆α
[i]) =

1

ni

ni∑
j=1

l ij
∗
(−α ij − ∆α ij),

and

f (∆α
[i]) =

1

2λm
αT Kα+

1

ni

ni∑
j=1

∆α ijwi (α)Tϕ (xij)+
ρ

2λ
∆αT

[i]K∆α [i],

whose gradient is coordinate-wise Lipschitz continuous. This type

of objective function has been studied in Block Coordinate De-

scent [24, 28]. We can show that the Local SDCA algorithm achieves

the following convergence rate when applying it to the local sub-

problem of our algorithm. In the theorems,qmax=maxj ∥ϕ (xij)∥
2
.

Theorem 6.1. When functions l ij (·) are (1/µ)-smooth for all (i, j):
Assumption 1 holds for Local SDCA if the number of iterations H
satisfies

H ≥ log(
1

Θ
)
ρσiiqmax + µλni

µλ
.

2
http://arxiv.org/abs/1612.04022.

http://arxiv.org/abs/1612.04022

Theorem 6.2. When functions l ij (·) are L-Lipschitz for all (i, j): As-
sumption 1 holds for Local SDCA if the number of iterationsH satisfies

H ≥ ni

(
1 − Θ

Θ
+

ρσiiqmax∥∆α ∗
[i]∥

2

2Θλni 2

(
D

ρ
i (∆α

∗
[i]; .) − D

ρ
i (0; .)

))
.

6.2 Primal-Dual Convergence Analysis

Next, we show the primal-dual convergence of the global update

step when solving W. Before introducing the main theorems, we

first introduce the following lemmas that describe the relationship

between increase in dual objective and the duality gap.

Lemma 6.3. ∀i, j, if l ij
∗
(·) is µ strongly convex (i.e., l ij (·) is (1/µ)-

smooth) and Assumption 1 is fulfilled, then for all iterations t ∈ [T]

within W-step of Algorithm 1 and ∀s ∈ [0, 1],

E
(
D (α (t+1)) − D (α (t))

)
≥ η(1 − Θ)

(
sG (α (t)) −

ρ

2λ
s2Q (t)

)
,

where

Q (t) = −
λµ (1 − s)

ρs

m∑
i=1

1

ni

u
(t)
[i] − α

(t)
[i]

2

+

m∑
i=1

(
u(t)

[i] − α
(t)
[i]

)T
K

(
u(t)

[i] − α
(t)
[i]

)
,

with

−uij
(t)
∈ ∂l ij

(
wi (α

(t))
T

xij
)
,

where ∂l ij (z) denotes the set of subgradients of l
i
j (·) at z.

Lemma 6.4. ∀i, j, if l ij (·) is L-Lipschitz continuous , then for all t ,

Q (t) ≤ 4L2π , where

π =
m∑
i=1

πini , and πi = max
α

[i]∈Rni

∥αT
[i]Kα [i]∥

2

∥α
[i]∥

2
.

When all ϕ (xij) are normalized to ∥ϕ (xij)∥
2 ≤ 1, we have πi ≤

σii
ni ,

and therefore Q (t) ≤ 4L2
∑m
i=1

σii .

Now, we are ready to present the convergence theorems for smooth

loss functions and non-smooth general convex loss functions in

Theorem 6.5 and Theorem 6.6, respectively.

Theorem 6.5. Consider W-step in Algorithm 1 withα (0) =0. Assume
that l ij (·) are (1/µ)-smooth for all (i, j). Let i∗=argmax

i

−λµ (1−s)
ρsni +πi .

To obtain E[D (α ∗)−D (α (t))] ≤ ϵD , it suffices to have t number of
iterations with

t ≥
1

η(1 − Θ)

λµ + ρni∗πi∗

λµ
log

m

ϵD
.

To obtain expected duality gap E[P (W(α (t)))−D (α (t))] ≤ϵG , it suffices
to have t number of iterations with

t ≥
1

η(1−Θ)

λµ+ρni∗πi∗

λµ
log

(
m

η(1−Θ)

λµ+ρni∗πi∗

λµ

1

ϵG

)
.

Theorem 6.6. Let l ij (·) be L-Lipschitz continuous and ϵG > 0 be the
duality gap. Then after T iterations in W-step of Algorithm 1, when

T ≥ T0 +max

{⌈
1

η(1 − Θ)

⌉
,

4L2πρ

λϵGη(1 − Θ)

}
,

T0 ≥ t0 +

(
2

η(1 − Θ)

(
8L2πρ

λϵG
− 1

))
+

,

t0 ≥ max

(
0,
⌈

1

η(1 − Θ)
log

(
2λm

4L2πρ

)⌉)
,

we have E[P (w(ᾱ))−D (ᾱ)] ≤ ϵG , where ᾱ is the average α over
T0+1 to T iterations, ᾱ = 1

T−T0

∑T−1

t=T0

α (t) .

Note that regarding the primal-dual convergence analysis, our

framework is not restricted to use the SDCA method as the lo-

cal solver. Any other local optimization methods that achieve a

Θ-approximate solution could be used to achieve primal-dual con-

vergence for the global problem. Our analysis shows that the outer

iteration T depends on Θ, i.e., how local solution approximates

the optimal local solution. This implies the trade-off between local

computation (Θ) and rounds of communication (T). We will discuss

it in details in the experiments section.

6.3 Effect of Task Relationships on
Primal-Dual Convergence Rate

Finally, in this section, we analyze how task relationships affect the

primal-dual convergence rate in our algorithm. Previously from (5),

we know that the parameter ρ must be not smaller than ρmin. We

have the upper bound for ρmin given by Lemma 6.7.

Lemma 6.7. ρmin is upper bounded by η ×max
i

∑m
i′=1

|σii′ |
σii .

Proof.

αT Kα =
m∑
i=1

αT
[i]K

m∑
i′=1

α
[i′]

=

m∑
i=1

m∑
i′=1

αT
[i]Kα [i′]

=

m∑
i=1

m∑
i′=1

σii′⟨
1

ni

ni∑
i=1

α ij x
i
j ,

1

ni′

ni′∑
i′=1

α i
′

j xi
′

j ⟩

≤

m∑
i=1

m∑
i′=1

1

2

|σii′ |
*.
,

1

ni 2

ni∑
i=1

α ij x
i
j

2

+
1

ni′2

ni′∑
i′=1

α i
′

j xi
′

j

2

+/
-

=

m∑
i=1

m∑
i′=1

1

2

(
|σii′ |

σii
αT

[i]Kα [i] +
|σii′ |

σi′i′
αT

[i′]Kα [i′]

)

=

m∑
i=1

m∑
i′=1

|σii′ |

σii
αT

[i]Kα [i].

It follows that

max

αT Kα∑m
i=1

αT
[i]Kα [i]

≤ max

i

m∑
i′=1

|σii′ |
σii

.

□

This upper bound on ρmin can be interpreted as the maximum

sum of relative task covariance between task i and all other tasks.

Consider two extreme conditions of the upper bound:

• Every task is equally correlated. In this case, the precision

matrix Ω is a Laplacian matrix defined on a fully connected

graph with 0/1 weight. Then the task covariance matrix Σ =
Ω−1

has equal elements. Therefore, the upper bound of ρmin

becomes η ×m, wherem is the number of tasks.

• Every task has no correlation with each other. Under this con-

dition, as Σ = Ω−1
is learned from the uncorrelated {wi }’s,

the absolute values of its diagonal elements dominate others.

Therefore, the upper bound of ρmin becomes close to η.

From Theorems 6.5 and 6.6, the smaller ρmin is, the faster the primal-

dual convergence rate is. This is coherent with the MTL intuition.

When the tasks have no or very weak correlation with each other,

there is no or very little interaction between the updates from

each task. Each task’s weight vector could be updated almost in-

dependently. And thus the convergence rate will be faster in this

case. On the contrary, when the tasks have strong correlation with

each other, there will be relatively strong interaction between the

updates from all tasks. As a result, the interaction between each

other’s updates will impact the convergence rate to become slower

compared to the former situation. Looking from another angle, ρmin

could be interpreted as a measure of the separability of the objective

function in (2). Smaller ρmin means that the objective function is

easier to be separated and distributed. Therefore, the primal-dual

convergence rate will become faster.

7 EXPERIMENTS

7.1 Implementation Details and Setup

We implement DMTRL on Petuum [31], which is a distributed ma-

chine learning platform.
3
And we run it on a local cluster consisting

of 4 machines with 16 worker cores each. For datasets whose num-

ber of tasks is less than the total number of cores, we assign each

task to one worker core. Otherwise, we equally distribute tasks

over the available cores and each core run the local subproblem

update sequentially task by task. Due to limitation of resources, we

are not able to distribute each task on one machine. However, the

experimental results presented later show good convergence perfor-

mance and promise for distributing over more machines. In all the

experiments, we set the aggregation scaling parameter η=1, and

ρ is set to max

i

∑m
i′=1

|σii′ |
σii in each Ω-step according to Lemma 6.7.

Regarding ϕ (·) in DMTRL, we use a linear mapping. We compare

our method with three baselines:

• Single Task Learning (STL): each task is solved independently

as a single empirical risk minimization problem.

• Centralized MTRL: all tasks are gathered in one machine and

MTRL is implemented centrally as described in [34]. This base-

line can be considered as a gold standard solution for learning

3
Note that our proposed method could be implemented on other distributed machine

learning platforms as well.

task relationships for MTL, but it fails to work in a distributed

computation manner.

• Single-machine SDCA (SSDCA): all tasks are centralized in one

machine where SDCA is performed over all coordinates of α .

This method could handle the case when there is too much

centralized data that Centralized MTRL could not handle.

It could be regarded as a scalable single machine solution to

MTRL.

We conduct extensive experiments on the following synthetic and

benchmark datasets.

• Synthetic 1: we generate a synthetic dataset for binary classifi-
cation with 16 tasks with feature dimension 100. Weight vectors

of three “parent” tasks {w1,w6,w11} are first randomly initi-

ated. Then other tasks’ weight vectors (“child” tasks) are initial-

ized by choosing one randomly from {w1,−w1,w6,−w6,w11,
−w11} and adding some random noise to the parameters. The

negative sign is to simulate tasks with negative relationships.

The instances for each task are randomly generated. Labels are

generated using the logistic regression model. The averaged

number of training instances per task is 1,894, while the aver-

aged number of test instances per task is 811. The total number

of instances equals 43,280.

• Synthetic 2: another synthetic dataset is generated using the

same data as the first one but with different task weight param-

eters such that there are more task correlations than the first

one. For Synthetic 2, ρ ((5) in Lemma 5.1) equals to 12.9457

while ρ = 6.2418 for Synthetic 1. We generate this dataset to

compare the primal-dual convergence rates of W-step under

different situations of task correlations.

• School: this is a regression dataset which contains examination

scores of 15,362 students from 139 schools. Each school corre-

sponds to a task. By adding 1 to the end of all data to account

for the bias term, each data point has 28 features. The averaged

number of training instances per task is 83 and the averaged

number of testing instances per task is 28. For training and

testing samples, we use the splits given by [3].

• MNIST: this is a large hand-written digits dataset with 10

classes. It contains 60,000 training and 10,000 testing instances.

The data points have a feature dimension of 784. We treat each

task as an one v.s. all binary classification task in our experi-

mental setting and draw equal number of instances from other

classes randomly and assign negative labels. Thus, we arrive

at training instances of 120,000 and testing instances 20,000 in

total for 10 tasks.

• MDS [6]: this is a dataset of product reviews on 25 domains

(apparel, books, DVD, etc.) crawled from Amazon.com. We

delete three domains with less than 100 instances and make

it a multi-task learning problem with 22 tasks. Each task is a

sentiment classification task that classifies a review as negative

or positive. The number of instances per task varies from 314

to 20,751, with average data size of 4,150. Training and testing

samples are obtained using a 70%-30% split.

The statistics about the above 5 datasets is summarized in Table 1.

For all datasets, we perform experiments on 10 random splits and

report the averaged results. We use hinge loss for classification

problems and squared loss for regression problems.

Table 1: Statistics of the datasets

Dataset # Tasks # Instances Dims Sparsity(%)

Synthetic (1 & 2) 16 43,280 100 100

School 139 15,362 28 32.14

MNIST 10 140,000 784 19.14

MDS 22 91,290 10,000 0.9

7.2 Results on Synthetic Datasets

Our first experiment is designed to test whether task relationships

can be well recovered by our proposed DMTRL in a distributed com-

putation manner. Figures 2(a) and Figures 2(b) show the comparison

between the learned task correlation matrix and the ground-truth

on Synthetic 1. We can see that DMTRL is able to capture the cor-

relation between tasks accurately, and the discrepancy between

the learned correlation and the ground-truth is within reasonable

amount.

Visualization of Learnt Correlation

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Task correlations learned by DMTRL

Visualization of True Correlation

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Ground truth task correlations

Figure 2: Learned correlation v.s. ground-truth correlation.

Our second experiment is designed to test under different situation

of tasks correlations, i.e., different values of ρ, how our proposed

algorithm converges. Figure 3 shows the comparison results of

primal-dual convergence rate on Synthetic 1 and Synthetic 2. Con-

vergence rate is slower when there are more task correlations (Syn-

thetic 2) given same data. This verifies our discussion of the impact

of task relationships on primal-dual convergence rate.

Our third experiment is to test the performance of our proposed

algorithm in terms of convergence time, communication cost, and

classification accuracy. Figures 4(a)-4(c) show the experimental

results of duality gap v.s. elapsed time, duality gap v.s. rounds of

communication, and prediction error v.s. rounds of communication

on Synthetic 1, where λ in (1) in the MTL formulation is set to be

λ = 10
−6
. Figure 4(a) shows comparison results in terms of conver-

gence performance in W-step between DMTRL and Single-machine

Rounds of communication
10

0
10

1
10

2
10

3

D
u

a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

10
1

Synthetic 1 and 2, lambda = 1e-6

DMTRL,H=8000,Synthetic 1

DMTRL,H=8000,Synthetic 2

Figure 3: Convergence on different task correlations

Time Elapsed(s)
10

0
10

2
10

4

D
u
a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

10
1

Synthetic 1, lambda = 1e-6

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

Single Machine SDCA

(a) Duality gap v.s. Time

Rounds of communication
10

0
10

1
10

2
10

3

D
u
a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

10
1

Synthetic 1, lambda = 1e-6

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

(b) Duality gap v.s. Comm.

Rounds of communication

100 200 300 400 500 600

P
re

d
ic

ti
o
n
 E

rr
o
r

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Synthetic 1, lambda = 1e-6

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

STL

Centralized MTRL

(c) Prediction v.s. Comm.

Time Elapsed(s)
10

0
10

2
10

4

D
u
a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

10
1

Synthetic 1, lambda = 1e-5

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

Single Machine SDCA

(d) Duality gap v.s. Time

Rounds of communication
10

0
10

1
10

2
10

3

D
u
a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

10
1

Synthetic 1, lambda = 1e-5

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

(e) Duality gap v.s. Comm.

Rounds of communication

20 40 60 80 100 120

P
re

d
ic

ti
o
n
 E

rr
o
r

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Synthetic 1, lambda = 1e-5

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

STL

Centralized MTRL

(f) Prediction v.s. Comm.

Figure 4: Experimental results on Synthetic 1

SDCA, where H denotes the number of iteration in local SDCA.

Superior performance of DMTRL verifies that besides distributed,

speed-up comes as a by-product of our algorithm in the case of

solving multi-task learning in large-scale. From Figure 4(b), we

observe that with the increase of local computation, the number of

communication rounds reduces. This is inline with the theoretical

convergence analysis. When number of local SDCA iterations in-

creases, each subproblem arrives at a better approximate solution

with smaller Θ and thus the iterations of global update needed to

reach convergence is reduced. From Figure 4(c), we observe that if

H is larger, then fewer communication rounds is needed for DMTRL

to converge to the optimal solution, which is as the same as the

solution obtained by Centralized MTRL. We also conduct experi-

ments with a different value of λ (λ = 10
−5
), with results shown in

Figures 4(d)-4(f), where similar results are observed.

7.3 Results on Real-world Datasets

On the three real-world datasets, we focus on testing the prediction

performance of DMTRL compared with the baselines. Table 2 and 3

report prediction performance of DMTRL with comparison to STL

and Centralized MTRL. We use RMSE and explained variance as

used in [3] to measure the performance on School, and use aver-

aged prediction error rate to measure the performance on MDS and

MNIST. Note that Centralized MTRL fails to generate results on

MDS and MNIST because of the out-of-memory issue when calcu-

lating the kernel matrix (each machine is of 16GB RAM). We also

report the prediction performance of DMTRL against the number

of rounds of communications with comparison with STL, Single-

machine SDCA, and Centralized MTRL in Figure 5(a).

Table 2: Comparison performance in terms of RMSE and ex-
plained variance on School

Method RMSE Explained Variance

DMTRL 10.23 ± 0.21 26.9 ± 1.6%

Centralized MTRL 10.23 ± 0.21 26.9 ± 1.7%

STL 11.10 ± 0.21 23.5 ± 1.9%

Table 3: Comparison performance in terms of error rate on
MNIST and MDS

Data set DMTL Centralized MTRL STL

MNIST 5.2 ± 0.12% Nil 5.2 ± 0.11%

MDS 12.6 ± 0.09% Nil 16.0 ± 0.1%

The results from the tables and figures show that DMTRL con-

verges to the same prediction error as Centralized MTRL. DMTRL

outperforms STL significantly except on MNIST, which shows the

advantage of DMTRL by leveraging related tasks to improve gener-

alization performance. It is reasonable because in our experimental

setting, each task in MNIST has around 12,000 instances for train-

ing, which is relatively large. As MNIST is a relatively easy learning

task, such amount of training data is sufficient for STL to perform

well. However this does not imply that DMTRL could not improve

generalization performance when total amount of data is large. In

the MDS case, there are in total 91,290 instances, with number of

instances per task varying from 314 to 20,751. Experiment results

show that performance of DMTRL outperforms STL by a signifi-

cant amount. In this case, since some tasks do not have sufficient

training data, DMTRL helps improve the prediction performance

by leveraging task relationships in multi-task learning. We also

note that for MDS, the number of instances of different tasks dif-

fers by a fairly large amount. This means with the same number

of local SDCA iterations per task, the task with largest instance

number will have a worse Θ-approximate solution compared to

others. Although convergence is still guaranteed, this hinders the

overall primal-dual convergence performance. Thus it remains an

open research issue on how to balance the data in each local worker

to achieve better convergence for our future work.

Finally, we also report the experimental results of DMTRL about

duality gap v.s. elapsed time and duality gap v.s. rounds of com-

munication on the three real-world datasets in Figures 5(b)-5(c).

The observations from the figures are similar to those found on the

synthetic datasets.

8 CONCLUSION AND FUTUREWORK

In this paper, we present a novel distributed framework for multi-

task relationship learning, denoted by DMTRL. With the proposed

framework, data of different tasks can be geo-distributedly stored

in local machines, and multiple tasks can be learned jointly without

centralizing data of different tasks to a master machine. We provide

theoretical convergence analysis for DMTRL with both smooth and

non-smooth convex loss functions. To verify the effectiveness of

DMTRL, we carefully design and conduct extensive experiments on

both synthetic and real-world datasets to test the convergence and

prediction accuracy of DMTRL in comparison with the baseline

methods. In our future work, we aim to extend our framework to

the setting that allows asynchronous communication. We also aim

to conduct study on how to achieve better convergence when data

are imbalanced over different tasks.

ACKNOWLEDGMENTS

This work is supported by NTU Singapore Nanyang Assistant Pro-

fessorship (NAP) grant M4081532.020 and Singapore MOE AcRF

Tier-2 grant MOE2016-T2-2-060.

REFERENCES

[1] Amr Ahmed, Abhimanyu Das, and Alexander J. Smola. 2014. Scalable hierarchical

multitask learning algorithms for conversion optimization in display advertising.

In WSDM. 153–162.

[2] Rie Kubota Ando and Tong Zhang. 2005. A framework for learning predictive

structures from multiple tasks and unlabeled data. JMLR 6 (2005), 1817–1853.

[3] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. 2008. Convex

multi-task feature learning. Machine Learning 73, 3 (2008), 243–272.

[4] Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay Mansour. 2012. Dis-

tributed Learning, Communication Complexity and Privacy. In COLT. 26.1–26.22.
[5] Inci M. Baytas, Ming Yan, Anil K. Jain, and Jiayu Zhou. 2016. Asynchronous

Multi-task Learning. In ICDM. 11–20.

[6] John Blitzer, Mark Dredze, Fernando Pereira, et al. 2007. Biographies, bollywood,

boom-boxes and blenders: Domain adaptation for sentiment classification. In

ACL. 440–447.
[7] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011.

Distributed optimization and statistical learning via the alternating direction

method of multipliers. Foundations and Trends® in Machine Learning 3, 1 (2011),

1–122.

[8] Rich Caruana. 1997. Multitask learning. Machine learning 28, 1 (1997), 41–75.

[9] Giovanni Cavallanti, Nicolo Cesa-Bianchi, and Claudio Gentile. 2010. Linear

algorithms for online multitask classification. JMLR 11 (2010), 2901–2934.

[10] Francesco Dinuzzo, Gianluigi Pillonetto, and Giuseppe De Nicolao. 2011. Client–

server multitask learning from distributed datasets. IEEE Transactions on Neural
Networks 22, 2 (2011), 290–303.

[11] Theodoros Evgeniou, Charles A Micchelli, and Massimiliano Pontil. 2005. Learn-

ing multiple tasks with kernel methods. JMLR (2005), 615–637.

[12] Theodoros Evgeniou and Massimiliano Pontil. 2004. Regularized multi–task

learning. In KDD. ACM, 109–117.

[13] Pedro A Forero, Alfonso Cano, and Georgios B Giannakis. 2010. Consensus-based

distributed support vector machines. JMLR 11 (2010), 1663–1707.

[14] Laurent Jacob, Jean-philippe Vert, and Francis R Bach. 2009. Clustered multi-task

learning: A convex formulation. In NIPS. 745–752.
[15] Tsuyoshi Kato, Hisashi Kashima, Masashi Sugiyama, and Kiyoshi Asai. 2008.

Multi-task learning via conic programming. In Advances in Neural Information
Processing Systems. 737–744.

[16] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,

Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling

Distributed Machine Learning with the Parameter Server. In OSDI. 583–598.
[17] Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter Richtárik, and

Martin Takác. 2015. Adding vs. Averaging in Distributed Primal-Dual Optimiza-

tion. In ICML. 1973–1982.

Rounds of communication

2 4 6 8 10

R
M

S
E

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15
School Dataset, lambda = 1e-6

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

STL

Centralized MTRL

Rounds of communication
5 10 15 20 25 30 35 40

P
re

d
ic

ti
o
n
 E

rr
o
r

0.04

0.06

0.08

0.1

0.12

0.14

MNIST Dataset, lambda = 1e-6

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

STL

Single Machine SDCA

Rounds of communication
10 20 30 40 50

P
re

d
ic

ti
o
n
 E

rr
o
r

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19
MDS Dataset, lambda = 1e-6

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

STL

Single Machine SDCA

Rounds of communication

2 4 6 8 10

R
M

S
E

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15
School Dataset, lambda = 1e-5

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

STL

Centralized MTRL

Rounds of communication
2 4 6 8 10

P
re

d
ic

ti
o
n
 E

rr
o
r

0.04

0.05

0.06

0.07

0.08

0.09

0.1
MNIST Dataset, lambda = 1e-5

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

STL

Single Machine SDCA

Rounds of communication
2 4 6 8 10

P
re

d
ic

ti
o
n
 E

rr
o
r

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23
MDS Dataset, lambda = 1e-5

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

STL

Single Machine SDCA

(a) Prediction Error v.s. Communication

Time Elapsed(s)
10

0
10

1
10

2
10

3

D
u
a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

School Dataset, lambda = 1e-6

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

Single Machine SDCA

Time Elapsed(s)
10

0
10

1
10

2
10

3

D
u
a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

10
1

MNIST Dataset, lambda = 1e-6

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

Single Machine SDCA

Time Elapsed(s)
10

1
10

2
10

3

D
u
a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

10
1

10
2

MDS Dataset, lambda = 1e-6

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

Single Machine SDCA

Time Elapsed(s)
10

0
10

1
10

2

D
u
a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

School Dataset, lambda = 1e-5

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

Single Machine SDCA

Time Elapsed(s)
10

0
10

1
10

2

D
u
a
lit

y
 G

a
p

10
-2

10
-1

10
0

10
1

MNIST Dataset, lambda = 1e-5

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

Single Machine SDCA

Time Elapsed(s)
10

0
10

1
10

2
10

3

D
u
a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

10
1

MDS Dataset, lambda = 1e-5

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

Single Machine SDCA

(b) Duality Gap v.s. Time

Rounds of communication
10

0
10

1
10

2
10

3

D
u
a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

School Dataset, lambda = 1e-6

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

Rounds of communication
10

0
10

1
10

2

D
u
a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

10
1

MNIST Dataset, lambda = 1e-6

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

Rounds of communication
10

0
10

1
10

2

D
u
a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

10
1

10
2

MDS Dataset, lambda = 1e-6

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

Rounds of communication
10

0
10

1
10

2

D
u
a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

School Dataset, lambda = 1e-5

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

Rounds of communication
10

0
10

1
10

2

D
u
a
lit

y
 G

a
p

10
-2

10
-1

10
0

10
1

MNIST Dataset, lambda = 1e-5

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

Rounds of communication
10

0
10

1
10

2

D
u
a
lit

y
 G

a
p

10
-3

10
-2

10
-1

10
0

10
1

MDS Dataset, lambda = 1e-5

DMTRL,H=2000

DMTRL,H=4000

DMTRL,H=6000

DMTRL,H=8000

(c) Duality Gap v.s. Communication

Figure 5: Experimental results on real-world datasets

[18] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-

man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al. 2015.

Mllib: Machine learning in apache spark. arXiv preprint arXiv:1505.06807 (2015).

[19] David Newman, Arthur Asuncion, Padhraic Smyth, and Max Welling. 2009.

Distributed algorithms for topic models. JMLR 10 (2009), 1801–1828.

[20] Guillaume Obozinski, Ben Taskar, and Michael I Jordan. 2010. Joint covariate se-

lection and joint subspace selection for multiple classification problems. Statistics
and Computing 20, 2 (2010), 231–252.

[21] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE
TKDE 22, 10 (October 2010), 1345–1359.

[22] Ali Rahimi and Benjamin Recht. 2007. Random features for large-scale kernel

machines. In NIPS. 1177–1184.
[23] Peter Richtárik and Martin Takáč. 2013. Distributed coordinate descent method

for learning with big data. arXiv preprint arXiv:1310.2059 (2013).
[24] Peter Richtárik and Martin Takáč. 2015. Parallel coordinate descent methods for

big data optimization. Mathematical Programming (2015), 1–52.

[25] Avishek Saha, Piyush Rai, Suresh Venkatasubramanian, and Hal Daume. 2011.

Online learning of multiple tasks and their relationships. In AISTATS. 643–651.
[26] Shai Shalev-Shwartz and Tong Zhang. 2013. Stochastic dual coordinate ascent

methods for regularized loss. JMLR 14, 1 (2013), 567–599.

[27] Ohad Shamir, Nathan Srebro, and Tong Zhang. 2014. Communication-Efficient

Distributed Optimization using an Approximate Newton-type Method. In ICML.
1000–1008.

[28] Rachael Tappenden, Martin Takáč, and Peter Richtárik. 2015. On the complexity

of parallel coordinate descent. arXiv preprint arXiv:1503.03033 (2015).
[29] Jialei Wang, Mladen Kolar, and Nathan Srebro. 2016. Distributed Multi-Task

Learning. In AISTATS. 751–760.
[30] Jialei Wang, Mladen Kolar, and Nathan Srebro. 2016. Distributed Multi-Task

Learning with Shared Representation. arXiv preprint arXiv:1603.02185 (2016).
[31] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun

Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. 2015. Petuum: a new

platform for distributed machine learning on big data. IEEE TBD 1, 2 (2015),

49–67.

[32] Tianbao Yang. 2013. Trading Computation for Communication: Distributed

Stochastic Dual Coordinate Ascent. In NIPS. 629–637.
[33] Yu Zhang. 2015. Parallel Multi-task Learning. In ICDM. 629–638.

[34] Yu Zhang and Dit-Yan Yeung. 2010. A Convex Formulation for Learning Task

Relationships in Multi-Task Learning. In UAI. 733–442.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 General Dual Form with Omega Fixed and Primal-Dual Certificates
	5 The Proposed Methodology
	5.1 The Overall Framework
	5.2 Local SDCA

	6 Convergence Analysis
	6.1 Local Subproblem Convergence
	6.2 Primal-Dual Convergence Analysis
	6.3 Effect of Task Relationships on Primal-Dual Convergence Rate

	7 Experiments
	7.1 Implementation Details and Setup
	7.2 Results on Synthetic Datasets
	7.3 Results on Real-world Datasets

	8 Conclusion and Future Work
	Acknowledgments
	References

